
Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 20 November 2017
Accepted: 28 June 2018

E-mail addresses:
arifa.bhutto@usindh.edu.pk (Arifa Bhutto)
abkh@et.aau.dk (Dil Muhammad Akbar Hussain)
*Corresponding Author

Validate UML Model and OCL Expressions Using USE Tool

Arifa Bhutto* and Dil Muhammad Akbar Hussain
Department of Energy and Technology, Aalborg University, Esbjerg, Denmark

ABSTRACT

Verification and validation of system models at design level has a huge impact on the quality of the system
software engineering process. In general, system modeling and designing Unified Modelling Language
(UML) is a standard for the design models of the systems. However, verification and validation of UML
models at early design level is not available, but somehow Object Constraint Language (OCL) constraints
are defined at the class level to ensure that the model is correctly designed. As for the static–dynamic
structure, there is no such mechanism defined in UML/OCL that has a huge impact on the development
of the software. Our research is focused on providing verifiable UML/OCL models. Our approach using
UML-based Specification Environment (USE) for UML class model is integrated with the OCL constraints
to check if the model is correctly designed as well as constraints for verification and validation. In USE,
the output is shown as the verifiable UML/OCL models by visual graphical models.

Keywords: OCL constraints, static and dynamic, Unified Modelling Language (UML) and Object
Constraints Language (OCL), verification and validation

INTRODUCTION

Unified Modelling Language (UML) is the
co-stander for development of the software
engineering system. UML is based on
different models which are described at

different levels of abstraction of the system.
However, in UML models for verification,
various types of languages are integrated to
make sure the model is correctly designed and
developed; among them Object Constraint
Language (OCL) is used for the verification
and validation of static and dynamic properties
of the design models defined by Richters and
Gogolla(2002), for further model-driven
approaches discussed by Dang and Gogolla
(2009).

However, there are various tools designed
for the verification and validation of the UML/
OCL, like OCL constraints solver for UML/
OCL that defines the Java API for the class

Arifa Bhutto and Dil Muhammad Akbar Hussain

1466 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

model using java programming for verification of OCL expression and satisfying the model
condition defined by Ali, Iqbal, Arcuri and Briand (2011). UML2Alloy, another project started
in 2005, is a scientific approach to use two critical functionalities of the Alloy Analyser to
simulate and verification of the UML class diagram contained OCL constraints to ensure that
the properties of the model are satisfied by Anastasakis, Bordbar, Georg and Ray (2007), and
Cabot, Clarisó and Riera (2014).

UMLtoCSP (Cabot, Clarisó, & Riera, 2007) is a tool for automatic verification of UML
models with OCL constraints. The model checks correctness for properties of the models.
UMLtoCSP tool checks for satisfiability and contradictory constraints. It supports only UML
class diagrams and shows a graphical view of the system (Cabot et al., 2007).

The research is focused on the verification of the UML/OCL expressions by USE tool
(Gogolla, Büttner, & Richters, 2007). The tool supports the graphical view of the model and also
checks the OCL constraints by applying variants and Pre–Post conditions by logical reasoning
illustrated by Doan and Gogolla (2018). The following are the steps as illustrated in Figure 1.

Figure 1. UML/OCL verification and validation using USE tool

Step1

The design of the application is described by the structure model in UML class, object

diagram and behavior of the system including the constraints by the OCL. The USE

specification is described in the UML classes, attributes, operations, and association. The

class diagrams integrated with OCL constraints as form of invariants and Pre–Post conditions

(Gogolla et al.,2007).

Step2

Open the USE specification model that generates the graphical view of the class model

including the relationships among the classes.

Step3

Check if the model structure is correct, then USE will verify behavioral properties of the

system model by analyzing the object diagram, which generates the sequence diagram in

connection.

Step4

Figure 1. UML/OCL verification and validation using USE tool

Step 1

The design of the application is described by the structure model in UML class, object diagram
and behavior of the system including the constraints by the OCL. The USE specification is
described in the UML classes, attributes, operations, and association. The class diagrams
integrated with OCL constraints as form of invariants and Pre–Post conditions (Gogolla et
al., 2007).

Step 2

Open the USE specification model that generates the graphical view of the class model including
the relationships among the classes.

Validate UML Model and OCL Expressions using USE Tool

1467Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

Step 3

Check if the model structure is correct, then USE will verify behavioral properties of the system
model by analyzing the object diagram, which generates the sequence diagram in connection.

Step 4

The USE model checks the UML class diagram relations, OCL constraints, invariants, and
Pre–Post condition to make sure that all OCL constraints are applied correctly and respond to
the violation of the constraints as form of the error detected.

In section II, we will further discuss the aforementioned steps in a detailed case study.

CASE STUDY

This section describes the small application model to check and verify the designed approach
by using the UML 2.2 and USE tool. The School Management System (SMS) is a complete
framework for the management of the school. The main functions of the application are the
following models:

• Student admission module

• Class distribution and timetable module

• Employee management module

• Payroll management module

• Accounts management module

• Generating reports

However, the detailed design of all model components of SMS is shown in Figure 2.

VERIFYING METHODOLOGY

Consider the aforementioned study first; we design the component diagram of the case study
using UML in Figure 2 and it represents the SMS requirement models of the case study in detail.
The internal structure of the components model is based on the object class structure, therefore
we design the class structure of the SMS case study using UML, shown in Figure 3. According
to the real requirements, class diagrams represent the entities, data types, functionalities, and
relationships of various entities. In UML, class structure shows the data types, operations,
and relationships. Using the example of our case study, we developed the models describing
employees, departments, accounts, with attributes, operations, and relationships of the classes as
shown in Figure 3. Furthermore, we integrated the class diagram with OCL constraints, which
we described in the natural language. Using OCL language, these constraints are integrated
with the UML class diagrams.

Arifa Bhutto and Dil Muhammad Akbar Hussain

1468 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

	
Figure 2. School Management System (SMS) in UML components diagram

Figure 2. School Management System (SMS) in UML

components diagram

Figure 3. UML class diagram of School Management System (SMS)
Figure 3. UML class diagram of School Management System (SMS)

Validate UML Model and OCL Expressions using USE Tool

1469Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

Constraints in natural language:

1. The employer must be working in a department.

2. The employer age is not equal to or greater than 20 years.

3. Employer accounts must be active.

4. If employee’s account opening balance is greater than or equal to 5000.

5. Employer accounts must be active.

6. Employer must be working in department.

The research methodology is based on selecting the USE tool, which validates the UML
class diagram, generating object diagram, sequence diagram from the USE specification. The
system also validates the model constraints in the form of OCL, variants, Pre–Post conditions
in running the environment automatically.

USE specification of UML class model of SMS Case Study

The USE tool defines the model description in textual format with the extension of use. The
UML class diagram is translated into the USE specification that is shown below. Classes,
attributes, operations, association, constraints, and Pre–Post conditions in the textual format
are listed below:
-- Example illustrating Pre-and Post-conditions

Constraints in natural language:

1. The employer must be working in a department.

2. The employer age is not equal to or greater than 20 years.

3. Employer accounts must be active.

4. If employee’s account opening balance is greater than or equal to 5000.

5. Employer accounts must be active.

6. Employer must be working in department.

The research methodology is based on selecting the USE tool, which validates the UML

class diagram, generating object diagram, sequence diagram from the USE specification. The

system also validates the model constraints in the form of OCL, variants, Pre–Post conditions

in running the environment automatically.

USE specification of UML class model of SMS Case Study

The USE tool defines the model description in textual format with the extension of use. The

UML class diagram is translated into the USE specification that is shown below. Classes,

attributes, operations, association, constraints, and Pre–Post conditions in the textual format

are listed below:

-- Example illustrating Pre-and Post-conditions

model School_Management_System

-- classes

class Employee

attributes

 staffid : Integer

 staffname : String

 fathername : String

 address : String

 gender : String

 contect : Real

 age : Integer

 salary : Real

 designation : String

 subject : String

 experience : Integer

 qualification : String

 active : Integer

 accountid : Integer

 deptid : Integer

operations

 raiseSalary(rate : Real) : Real

end

class Accounts

attributes

 accountid : Integer

 accountname : String

 staffid : Integer

 bankname : String

 openingbalance : Real

 accountno : Real

 active : Integer

 deptid : Integer

operations

 hire(e : Employee)

 fire(e : Employee)

end

class Department

attributes

 deptid : Integer

 deptname : String

 accountid : Integer

 staffid : Integer

operations

 add (a : Accounts)

 remove (a : Accounts)

end

Arifa Bhutto and Dil Muhammad Akbar Hussain

1470 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

 designation : String

 subject : String

 experience : Integer

 qualification : String

 active : Integer

 accountid : Integer

 deptid : Integer

operations

 raiseSalary(rate : Real) : Real

end

class Accounts

attributes

 accountid : Integer

 accountname : String

 staffid : Integer

 bankname : String

 openingbalance : Real

 accountno : Real

 active : Integer

 deptid : Integer

operations

 hire(e : Employee)

 fire(e : Employee)

end

class Department

attributes

 deptid : Integer

 deptname : String

 accountid : Integer

 staffid : Integer

operations

 add (a : Accounts)

 remove (a : Accounts)

end

-- associations

association WorksIn between

 Employee[*]

 Department[1..*]

end

association Controls between

 Department[*]

 Accounts[*]

end

association Having between

 Employee[1]

 Accounts[*]

end

-- constraints

constraints

context Employee inv:

 age >= 20

 context Department inv:

 staffid = 1

context Accounts inv:

accountid=active

 context Accounts inv:

 openingbalance >= 5000

 context Employee inv:

 staffid = deptid

 context Accounts inv:

 staffid= accountid

context Employee::raiseSalary(rate : Real) : Real

 post raiseSalaryPost:

 designation : String

 subject : String

 experience : Integer

 qualification : String

 active : Integer

 accountid : Integer

 deptid : Integer

operations

 raiseSalary(rate : Real) : Real

end

class Accounts

attributes

 accountid : Integer

 accountname : String

 staffid : Integer

 bankname : String

 openingbalance : Real

 accountno : Real

 active : Integer

 deptid : Integer

operations

 hire(e : Employee)

 fire(e : Employee)

end

class Department

attributes

 deptid : Integer

 deptname : String

 accountid : Integer

 staffid : Integer

operations

 add (a : Accounts)

 remove (a : Accounts)

end

Validate UML Model and OCL Expressions using USE Tool

1471Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

-- associations

association WorksIn between

 Employee[*]

 Department[1..*]

end

association Controls between

 Department[*]

 Accounts[*]

end

association Having between

 Employee[1]

 Accounts[*]

end

-- constraints

constraints

context Employee inv:

 age >= 20

 context Department inv:

 staffid = 1

context Accounts inv:

accountid=active

 context Accounts inv:

 openingbalance >= 5000

 context Employee inv:

 staffid = deptid

 context Accounts inv:

 staffid= accountid

context Employee::raiseSalary(rate : Real) : Real

 post raiseSalaryPost:

 salary = salary@pre * (1.0 + rate)

 post resultPost:

 result = salary

context Accounts::hire(e : Employee)

 pre hirePre1: e.isDefined()

 pre hirePre2: employee->excludes(e)

 post hirePost: employee->includes(e)

context Accounts::fire(e : Employee)

 pre firePre: employee->includes(e)

 post firePost: employee->excludes(e)

After writing the aforementioned specifications in textual form, USE model opens the

specifications shown in Figure 3. GUI environment is shown graphically in class diagram,

association, OCL constraints, variants, and Pre–Post conditions.

Using GUI environment, models are viewed and the errors are found by messages, structure

is correct or not as well as define number of classes, association, invariants, Pre–Post

conditions as shown in Figure 3. In the next section, we validate the model using the OCL

constraints by applying the object data and runtime we check the results of the UML object,

class models

After writing the aforementioned specifications in textual form, USE model opens the
specifications shown in Figure 3. GUI environment is shown graphically in class diagram,
association, OCL constraints, variants, and Pre–Post conditions.

Using GUI environment, models are viewed and the errors are found by messages, structure
is correct or not as well as define number of classes, association, invariants, Pre–Post conditions
as shown in Figure 4. In the next section, we validate the model using the OCL constraints by
applying the object data and runtime we check the results of the UML object, class models

-- associations

association WorksIn between

 Employee[*]

 Department[1..*]

end

association Controls between

 Department[*]

 Accounts[*]

end

association Having between

 Employee[1]

 Accounts[*]

end

-- constraints

constraints

context Employee inv:

 age >= 20

 context Department inv:

 staffid = 1

context Accounts inv:

accountid=active

 context Accounts inv:

 openingbalance >= 5000

 context Employee inv:

 staffid = deptid

 context Accounts inv:

 staffid= accountid

context Employee::raiseSalary(rate : Real) : Real

 post raiseSalaryPost:

Arifa Bhutto and Dil Muhammad Akbar Hussain

1472 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

CREATE OBJECT AND VALIDATE THE DATA

In the USE tool, we can create the object by selecting the option create object shown in Figure
5. We can also directly set the data in the object model by using the option add data as shown in
Figure 6 in USE model, we can set the data by command prompt as shown in the listing below:

Figure 3. USE tool generating class diagram and association

CREATE OBJECT AND VALIDATE THE DATA

In the USE tool, we can create the object by selecting the option create object shown in

Figure 4. We can also directly set the data in the object model by using the option add data as

shown in Figure 5 in USE model, we can set the data by command prompt as shown in the

listing below:
use> !create Accounts : Department

use> !create mehran : Employee

use> !set mehran.staffname :='Ali'

use> !set mehran.salary :=1500000

use> !set mehran.staffname :='Ali'

use> !set mehran.salary :=1500000

use> !set mehran.age :=24

Figure 4. USE tool generating class diagram and association

Figure 3. USE tool generating class diagram and association

CREATE OBJECT AND VALIDATE THE DATA

In the USE tool, we can create the object by selecting the option create object shown in

Figure 4. We can also directly set the data in the object model by using the option add data as

shown in Figure 5 in USE model, we can set the data by command prompt as shown in the

listing below:
use> !create Accounts : Department

use> !create mehran : Employee

use> !set mehran.staffname :='Ali'

use> !set mehran.salary :=1500000

use> !set mehran.staffname :='Ali'

use> !set mehran.salary :=1500000

use> !set mehran.age :=24

Figure 4. Object diagram of SMS in USE tool

Figure 5. Class, object diagram with data, and properties of the objects

Figure 5. Object diagram of SMS in USE tool

Validate UML Model and OCL Expressions using USE Tool

1473Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

DEFINE MODEL INHERITANCE CONSTRAINTS

Model also checks the constraints by the form of invariants if the constraints are violating the
system by giving the message: Model inherent constraints violated. In the USE, invariants
messages show that there is a problem in the state; we can view the message of the invariants
violation in the GUI panel shown at the bottom of the screen. The command prompt also has
check command to view the violated comments as shown in the listing below

Figure 4. Object diagram of SMS in USE tool

Figure 5. Class, object diagram with data, and properties of the objects Figure 6. Class, object diagram with data, and properties of the objects

 DEFINE MODEL INHERITANCE CONSTRAINTS

Model also checks the constraints by the form of invariants if the constraints are violating the

system by giving the message: Model inherent constraints violated. In the USE, invariants

messages show that there is a problem in the state; we can view the message of the invariants

violation in the GUI panel shown at the bottom of the screen. The command prompt also has

check command to view the violated comments as shown in the listing below
use> check

Multiplicity constraint violation in association

`WorksIn´

 Object `Accounts´ is connected to 0 object(s) of class

`Department´

 but the multiplicity is specified as `1. *'

Multiplicity constraint violation in association

`WorksIn´

 Object `Mehran´ is connected to 0 object(s) of class

`Department´

 but the multiplicity is specified as `1.. *'

According to the above class diagram in UML, it is specified that each employee works in the

department. USE GUI model shows the object diagram; there is no employee who works in

the department in association link. We can fix this in GUI model as well as by command

prompt by just typing the insert command for inserting the missing association listed below:

use>!insert (mehran, Accounts) into worksIn

The USE GUI environment connected the link directly by inserting the object using the

object diagram option or inserting the command directly from the command prompt.

The USE diagram, Figure 6, shows the red link in the object diagram between department

and employee object, which is the violation of invariants; we can fix it by applying the

correct rules for invariants, which is shown in Figure 7 of the model diagrams using USE

GUI.

Arifa Bhutto and Dil Muhammad Akbar Hussain

1474 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

According to the above class diagram in UML, it is specified that each employee works in
the department. USE GUI model shows the object diagram; there is no employee who works
in the department in association link. We can fix this in GUI model as well as by command
prompt by just typing the insert command for inserting the missing association listed below:

 DEFINE MODEL INHERITANCE CONSTRAINTS

Model also checks the constraints by the form of invariants if the constraints are violating the

system by giving the message: Model inherent constraints violated. In the USE, invariants

messages show that there is a problem in the state; we can view the message of the invariants

violation in the GUI panel shown at the bottom of the screen. The command prompt also has

check command to view the violated comments as shown in the listing below
use> check

Multiplicity constraint violation in association

`WorksIn´

 Object `Accounts´ is connected to 0 object(s) of class

`Department´

 but the multiplicity is specified as `1. *'

Multiplicity constraint violation in association

`WorksIn´

 Object `Mehran´ is connected to 0 object(s) of class

`Department´

 but the multiplicity is specified as `1.. *'

According to the above class diagram in UML, it is specified that each employee works in the

department. USE GUI model shows the object diagram; there is no employee who works in

the department in association link. We can fix this in GUI model as well as by command

prompt by just typing the insert command for inserting the missing association listed below:

use>!insert (mehran, Accounts) into worksIn

The USE GUI environment connected the link directly by inserting the object using the

object diagram option or inserting the command directly from the command prompt.

The USE diagram, Figure 6, shows the red link in the object diagram between department

and employee object, which is the violation of invariants; we can fix it by applying the

correct rules for invariants, which is shown in Figure 7 of the model diagrams using USE

GUI.

The USE GUI environment connected the link directly by inserting the object using the object
diagram option or inserting the command directly from the command prompt.

The USE diagram, Figure 7, shows the red link in the object diagram between department
and employee object, which is the violation of invariants; we can fix it by applying the correct
rules for invariants, which is shown in Figure 8 of the model diagrams using USE GUI.

METHOD FOR CHECKING INVARIANTS

Checking class invariants automatically, the USE graphical interface has a capability to view
the changes directly. We can change the status and the GUI shows the results. OCL invariants
can be analyzed by applying the commands listed below:

METHOD FOR CHECKING INVARIANTS

Checking class invariants automatically, the USE graphical interface has a capability to view

the changes directly. We can change the status and the GUI shows the results. OCL invariants

can be analyzed by applying the commands listed below:
Department::hire(self:Accounts, e:mehran) [caller:

openter Accounts hire(mehran)@<input>:1:0]

use> info vars

[frame 1]

 e : Employee = mehran

 self : Department = Accounts

[frame 0]

 empty

[object variables]

 Accounts : Department = Accounts

 mehran : Employee = mehran

use> !insert (e,Accounts) into WorksIn

use> !openter mehran raiseSalary(0.1)

use> !set self.salary := self.salary+ self.salary * rate

use> !create Accounts : Department

use> !create mehran : Employee

use> !set mehran.staffname :='Ali'

use> !set mehran.age :=24

use> !openter Accounts hire(mehran)

precondition `hirePre1' is true

precondition `hirePre2' is true

use> info opstack

1. Department::hire(self:Accounts, e:mehran) [caller:

openter Accounts hire(mehran)@<input>:1:0]

use> info vars

[frame 1]

 e : Employee = mehran

 self : Department = Accounts

[frame 0]

Validate UML Model and OCL Expressions using USE Tool

1475Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

METHOD FOR CHECKING INVARIANTS

Checking class invariants automatically, the USE graphical interface has a capability to view

the changes directly. We can change the status and the GUI shows the results. OCL invariants

can be analyzed by applying the commands listed below:
Department::hire(self:Accounts, e:mehran) [caller:

openter Accounts hire(mehran)@<input>:1:0]

use> info vars

[frame 1]

 e : Employee = mehran

 self : Department = Accounts

[frame 0]

 empty

[object variables]

 Accounts : Department = Accounts

 mehran : Employee = mehran

use> !insert (e,Accounts) into WorksIn

use> !openter mehran raiseSalary(0.1)

use> !set self.salary := self.salary+ self.salary * rate

use> !create Accounts : Department

use> !create mehran : Employee

use> !set mehran.staffname :='Ali'

use> !set mehran.age :=24

use> !openter Accounts hire(mehran)

precondition `hirePre1' is true

precondition `hirePre2' is true

use> info opstack

1. Department::hire(self:Accounts, e:mehran) [caller:

openter Accounts hire(mehran)@<input>:1:0]

use> info vars

[frame 1]

 e : Employee = mehran

 self : Department = Accounts

[frame 0]

 empty

[object variables]

 Accounts : Department = Accounts

 mehran : Employee = mehran

use> !insert (e,Accounts) into WorksIn

use> !set e.salary :=2000

use> !opexit

postcondition `hirePost' is true

use> info opstack

no active operations.

use> info vars

[frame 0]

 empty

[object variables]

 Accounts : Department = Accounts

 mehran : Employee = mehran

use> !openter mehran raseSalary(0.1)

<input>:1:0: No operation `raseSalary'found in class

`Employee'.

use> !openter mehran raiseSalary(0.1)

use> !set self.salary := self.salary + self.salary *

rate

use> !opexit 2200

postcondition `raisesalarypost' is true

postcondition `resultpost' is true

DISCUSSION

The results of the design model shown by the USE GUI generate the sequence diagram to

visualize the variants, Pre–Post conditions by directly applying an object to validate the

model according to the data. In Figures 8 and 9, communication model represents the object

data including the actual data and relationships of the objects. Figure 10 shows the object,

class variants, and counts how many objects are defined as well as class invariants checked-

the invariants view of the class by green check that all invariants are correct. Figure 11 shows

Arifa Bhutto and Dil Muhammad Akbar Hussain

1476 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

DISCUSSION

The results of the design model shown by the USE GUI generate the sequence diagram to
visualize the variants, Pre–Post conditions by directly applying an object to validate the model
according to the data. In Figures 9 and 10, communication model represents the object data
including the actual data and relationships of the objects. Figure 11 shows the object, class
variants, and counts how many objects are defined as well as class invariants checked- the
invariants view of the class by green check that all invariants are correct. Figure 12 shows the
complete model behavior and all sub-models like state shows the model status, communication,
object, class, class invariants, and sequence. The model output shows that the verification and
validation process of the school management system design is done correctly by UML/OCL
constraints applied on object class models.

Figure 6. Invariants not satisfied shows in object Link diagram by red line

Figure 7. Sequence diagram represent invariants

Figure 7. Invariants not satisfied shows in object Link diagram by red lineFigure 6. Invariants not satisfied shows in object Link diagram by red line

Figure 7. Sequence diagram represent invariants Figure 8. Sequence diagram represent invariants

Validate UML Model and OCL Expressions using USE Tool

1477Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

Figure 8. Sequence diagram represents invariants correct

Figure 9. Sequence diagram represents invariants correct

Figure 10. Object, class variants, and counts of the object including sequence
diagram(Overall USE Environment)

Figure 9. Communication diagram

Figure 10. Communication diagram

The model shows the red line in Figure 6 when we write the wrong invariants. Figure 7
shows the invariants violation in sequence diagram, which indicates that the model does not
provide the right invariants to validate the model.

Arifa Bhutto and Dil Muhammad Akbar Hussain

1478 Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

Figure 10. Object, class variants, and counts of the object including sequence
diagram(Overall USE Environment)

Figure 9. Communication diagram

Figure 11. Object, class variants, and counts of the object including sequence diagram (Overall USE
Environment)

Figure 11. Complete vview of the USE model overview

Figure 12. Complete vview of the USE model overview

Validate UML Model and OCL Expressions using USE Tool

1479Pertanika J. Sci. & Technol. 26 (3): 1465 - 1480 (2018)

CONCLUSION

This paper is an approach for verification and validation of structural and behavioral properties
of UML model integrated with the OCL constraints. The input we select is USE application
that describes the class structure and applies the OCL constraints as a form of invariants. As
an output, we found the verifiable UML class, object, and sequence model. We apply this
methodology on the small case, which shows very impressive results for the verification and
validation of UML models.

Our future work will continue in different directions, like all the models are generated
automatically and adding the frame conditions to UML and OCL models.

ACKNOWLEDGEMENT

This research work was conducted and supported by the Department of Energy and Technology,
Aalborg University, Denmark. Authors greatly acknowledge and appreciate their excellent
unconditional support for using laboratories and other facilities. Special thanks to Jens Bo,
Head of the Section at Esbjerg Campus for his constant involvement in keeping the status
updated with short seminar/presentations.

REFERENCES
Ali, S., Iqbal, M. Z., Arcuri, A., & Briand, L. (2011, July). A search-based OCL constraint solver for

model-based test data generation. In 11th International Conference on Quality Software (QSIC), 2011
(pp. 41–50). IEEE.

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2007, September). UML2Alloy: A challenging model
transformation. In International Conference on Model Driven Engineering Languages and Systems
(pp. 436–450). Springer, Berlin, Heidelberg.

Cabot, J., Clarisó, R., & Riera, D. (2007, November). UMLtoCSP: A tool for the formal verification of
UML/OCL models using constraint programming. In Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering (pp. 547–548). ACM.

Cabot, J., Clarisó, R., & Riera, D. (2014). On the verification of UML/OCL class diagrams using constraint
programming. Journal of Systems and Software, 93, 1–23.

Dang, D., & Gogolla M., (2009). Precise model-driven transformations based on graphs and met models.
In 7th IEEE International Conference on Software Engineering and Formal Methods (pp. 23–27). IEEE.

Doan, K. H., & Gogolla, M. (2018). Logical reasoning with object diagrams in a UML and OCL tool.
In P. Chapman, A. Moktefi, & G. Stapleton, (Eds.), Proceedings of the 10th International Conference
on Diagrams (DIAGRAMS 2018). Springer, LNCS, Berlin, Heidelberg.

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A UML-based specification environment for
validating UML and OCL. Science of Computer Programming, 69(1–3), 27–34.

Richters, M., & Gogolla, M. (2002). OCL: Syntax, semantics, and tools. In Object Modelling with the
OCL (pp. 42–68). Springer, Berlin, Heidelberg.

